Parallel Bandreduction and Tridiagonalization®

Christian BischofT Mercedes Marques* Xiaobai Sunf

ANL-MCS-P347-0193
Published in the Proceedings of the Swxth SIAM Conference on Parallel Processing for Scientific
Computing, R. Sincovec, Fd., pp. 383-390, SIAM, 1993.

Abstract

This paper presents a parallel implementation of a blocked band reduction algorithm
for symmetric matrices suggested by Bischof and Sun. The reduction to tridiagonal or
block tridiagonal form is a special case of this algorithm. A blocked double torus
wrap mapping is used as the underlying data distribution and the so-called WY
representation is employed to represent block orthogonal transformations. Preliminary
performance results on the Intel Delta indicate that the algorithm is well-suited to
a MIMD computing environment and that the use of a block approach significantly
improves performance.

1 Introduction

Reduction to tridiagonal form is a major step in eigenvalue computations for symmetric
matrices. If the matrix is full, the conventional Householder tridiagonalization approach [13,
p. 276] or block variants thereof [12] is the method of choice. These two approaches also
underlie the parallel implementations described for example in [15] and [10].

The approach described in this paper, on the other hand, follows the band reduction
framework suggested by Bischof and Sun [7]. The standard approach, which eliminates
all subdiagonals at one time, is a special case, but “piecemeal” approaches are possible as
well, as illustrated in Figure 1. The “piecemeal” approach was shown to be attractive in
comparison to previously suggested band reduction schemes [20, 21, 18, 19] in that it allows
tradeoffs between flops and storage.

*This work was supported by the Applied and Computational Mathematics Program, Defense Advanced
Research Projects Agency, under contract DM28E04120, and by the Office of Scientific Computing, U.S.
Department of Energy, under Contract W-31-109-Eng-38.

TMathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue,
Argonne, IL 60439

{Department of Computer Science, University of Texas at Austin, Austin, TX 78712. This work was
performed while the author was visiting the Mathematics and Computer Science Division of Argonne
National Laboratory

Fia. 1. Reduction to Tridiagonal Form by a Sequence of Bandreductions

1

nb

QR| PRE
SYM

POST

Fra. 2. Band Reduction Primitive

In the next section, we will briefly review the idea behind this band reduction approach,
and in particular show that it allows in a very natural fashion for the use of so-called “block
algorithms.” In Section 3, we briefly outline our parallel implementation and in Section 4
we present preliminary performance results. Lastly, we summarize our findings.

2 A Blocked Bandreduction Algorithm

This section gives a brief introduction into the algorithmic framework suggested in [7]. For
reasons of brevity, we omit tedious detail and try to convey a general understanding of the
nature of the algorithm, in particular with respect to the various degrees of parallelism that
it embodies.
Our algorithm employs essentially only one primitive, namely an update acting upon a
submatrix of the form shown in Figure 2. It involves the following steps:
QR: The reduction of a trapezoidal matrix T (say) with nb columns to upper triangular

form g via Householder reductions and the accumulation of transformations W

T:(I—WY)(]O%).

W and Y are of the same size as T' and are accumulated according to what is called
“method 1”7 in [8].

and Y such that

PRE: The application of the block orthogonal transformation I — WY to a matrix B
(say) from the left, i.e. B «— (I — WY)TB.

SYM: The application of I — WY to a matrix C' (say) from the left and the right, i.e.
C—{I-wy)y'c(r-wy).

POST: The application of I — WY to a matrix D (say) from the right, i.e. D —
D(I - WY).

The so-called “WY representation” of a series of Householder transformations was

chosen to allow for the use of matrix-matrix operations instead of matrix-vector operations

in applying the orthogonal transformation. This has a very beneficial effect on architectures

Fia. 3. First Block Bandreduction Step.

N\,

N \

N
P N
.

zero out

bulg

Fia. 4. Chasing the Bulge.

employing a memory hierarchy, since it greatly reduces the amount of data movement
required [8, 4, 5, 1].

To see how this algorithmic primitive is used, let us consider an example. Figure 3
shows the reduction of d subdiagonals in nb columns of a matrix with initial bandwidth b.
In this figure, as in the following ones, only the update on the lower triangle is shown. We
see that in zeroing out the d x nb trapezoid, we generate a “bulge”. To avoid more fill-in
when zeroing out the next d x nb subdiagonal block, we now first must zero out the first nb
columns of the bulge. This is shown in Figure 4. We see that in removing the first d x nb
columns of the bulge, we create another bulge further down. The first d X nb columns of
this bulge are then removed in the same fashion.

We see that the band reduction algorithm has two main stages, namely band reduction
and bulge chasing and that the computational primitive shown in Figure 2 takes care of

3

,,,,,,,,,,,,,,

,,,,,,,,,,,,,,

zero out

Fra. 5. Parallelism Within one Bandreduction

both of them.

It is also worth pointing out that the band reduction of the next d x nb subdiagonal
matrix can begin before the bulge chasing associated with the first band reduction has been
completed. This is shown in Figure 5. Hence, depending on the matrix size n, the initial
bandwidth b, the number d of subdiagonals to be reduced, and the block size nb, there
is a fair amount of potential overlap between the bulge chasing steps associated with the
reduction of different d x nb subdiagonal blocks. We also note that this paradigm implicitly
requires that nb < b—d, soif d = b—1 (that is, we reduce the matrix directly to tridiagonal
form) we are restricted to nb = 1.

We remark that there is another degree of parallelism if we employ this scheme in a
“piecemeal” bandreduction approach as shown for example in Figure 1. To see this, note
that we could start a further reduction of the band as soon as the previous bandreduction
has progressed far enough to be ahead of the bulge generated by the reduction sequence
initiated by the narrower band.

Lastly, we note that if the accumulation of the orthogonal transformation matrix ¢} is
required, every orthogonal reduction of width nb necessitates the update of a n x nb strip
of ¢) from the right. This is the same kernel as in the POST step.

3 A Parallel Implementation

To distribute the matrix across a distributed-memory machine, we chose a blocked two-
dimensional torus wrapping (see, for example [17, 11, 10]). A scalar wrap mapping and one-
dimensional (i.e. row or column oriented distributions) are special cases of this mapping.
This mapping also has been selected in other efforts to develop linear algebra basis software
for massively parallel machines, for example the ScaLAPACK project [9, 11]. We also
assume that our underlying hardware is logically configured as a p X p mesh, and that only
one process is active on every processor.

While the code relies heavily on the key primitive shown in Figure 2, a parallel
implementation of this primitive for a block 2-D torus wrapped data distribution is by
no means a trivial task. In particular it turns out that if one wants to exploit symmetry,
the implementation of the SYM step may involve a noncontiguous group of processors

Jocal matrix size ='360

Mflops per processor

1 2 3 4 5
block size

Fic. 6. Influence of Block Size on (block) Tridiagonalization.

on the same row or column of the mesh. Hence, to develop a portable code, and to
allow a maintainable implementation of this code, we chose to base our implementation on
the Chamelon parallel programming tools [14]. Chamelon’s primitives (such as broadcast
or global summation) support arbitrary process groups, and several such “computational
contexts” may be active at any given point in time. This greatly simplifies programming,
since, for example, a “broadcast” will automatically involve only the members of this
computing context.

Our code is still under development, and at the moment the code for unblocked
Householder tridiagonalization, blocked reduction of dense matrix to block tridiagonal form
(i.e. nb subdiagonals), and blocked and unblocked band reduction are functional. We do
not yet exploit symmetry, we are not yet able to reduce a block tridiagonal matrix to scalar
tridiagonal form, and for simplicity we currently assume that the matrix size divides evenly
by the block size. We also note that the Chamelon tools currently provide only unoptimized
“fan-in/fan-out” broadcast and global sum primitives (see, for example [22, 3]) which are
substantially slower than primitives that are optimized for the Intel Delta (e.g. [2, 16]).
These issues will be addressed in future versions of our code.

4 Preliminary Performance Results

In this section, we present preliminary performance results that we have obtained with
a double-precision version of our code running on 64 processors of the Intel Delta. The
purpose of these experiments was to gain insight into the behavior of our implementation
and to validate the algorithmic choices that we had made.

First, let us consider the effect that blocking has on the execution of the algorithm.
Figure 6 shows the sustained per-processor execution rate that is obtained when a full
matrix is reduced to banded form with nb subdiagonals, and the transformation matrix ¢
is not accumulated. All n — nb subdiagonals are reduced at the same time, so we do not
employ a “piecemeal” approach here. We see that the block approach is significantly faster,
in particular for larger local matrix sizes. Hence we expect this approach to be superior,
even when we add the final bandreduction from nb to 1 subdiagonals which we currently
have not implemented yet. In our experience, choosing a bandwidth larger than five did
not result in a further performance increase.

Next, we show the per-processor sustained performance of the (block)tridiagonal
reduction of a full matrix with and without accumulating ¢ for various matrix sizes. We

5

Without accumulating Q With accumulating Q

T2
Q Q
o o
o o
o} Lo}
o o
a a
o o
s s

. . 2 """"""" S
200 400 600 800 200 400 600 800
local matrix size local matrix size

Fic. 7. Influence of Problem Size on (block) Tridiagonalization on 8 x 8 Partition.

Without accumulating Q

With accumulating Q

12 12
A0
Q Q
o o
o o
o} Lo}
o o
a a
o o
s s
200 400 600 800 200 400 600 800
local matrix size local matrix size

Fic. 8. Influence of Problem Size on (block) Tridiagonalization on 16 x 4 Partition.

see again that the blocked approach is always superior to the unblocked approach. We also
note that in particular for smaller matrix sizes the accumulation of @) leads to a significant
increase in the Mflop rate. This is not surprising since the accumulation of ¢) requires much
less communication in relation to computation than the tridiagonal reduction.

Exploiting the freedom that the generality of the Chamelon system provided us, we also
performed the same suite of tests on a physical 16 x 4 partition, which we viewed as an 8 X 8
logical mesh. These results are shown in Figure 8. Performance degrades somewhat, but
not dramatically. These results confirm us in our decision to base our implementation on
programming tools that directly support our logical view of the machine, and hide possible
machine-specific improvements in that layer instead of directly embedding them in our
code.

Lastly, Figure 9 shows the per-processor performance that we obtain for a “true” band
reduction. In these experiments, 240 subdiagonals are removed from a matrix of order 5760
with initially 720 subdiagonals, and a matrix of order 2880 with initially 360 subdiagonals,
respectively. The transformation matrix ¢} is not accumulated. In contrast to the previous
experiments, these reductions execute the “bulge chasing” that was described in Section 2.
We see that, not surprisingly, a true band reduction performs much slower than a (block)
tridiagonalization, but again the choice of a blocked approach pays off.

Mflops per processor

block size
Fia. 9. Influence of Block Size on Band Reduction

5 Conclusions

This paper presented an implementation of a blocked band reduction framework for
symmetric matrices. A blocked double torus wrap mapping is used as the underlying
data distribution and the so-called WY representation is employed for the block orthogonal
transformations. Preliminary performance results on the Intel Delta indicate that the
algorithm is well-suited to a MIMD computing environment and that the use of a block
approach significantly improves performance.

We are working to incorporate exploitation of symmetry as well as to separate the
“mapping block size” used for the data layout and the “QR block size” used in the
orthogonal reductions which currently are assumed to be the same. We are also working on
incorporating better tuned communication routines in the Chamelon programming system
that our implementation builds on. Lastly we mention that, in the end, we plan to
exploit the divide-and-conquer nature of the tridiagonalization of matrices with only 0
and 1 eigenvalues [6] as it arises in the ISDA eigenvalue solver framework [17]. With
the 2D torus wrapped data mapping, this approach would not significantly reduce the
communication requirements of the code, but would approximately halve the number of
arithmetic operations required.

Acknowledgements

The authors would like to thank Bill Gropp for his help and support with the Chamelon
programming system. We also thank Steven Huss-Lederman and Anna Tsao for many
helpful discussions during the course of this work.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, SIAM, Philadelphia,
PA, 1992.

[2] M. Barnett, R. Littlefield, D. G. Payne, and R. van de Geijn, Efficient communication
primitives on mesh architectures with hardware routing, in Proceedings of the Sixth STAM
Conference on Parallel Processing for Scientfic Computing, R. Sincovec, ed., Philadelphia,
1993, STAM.

[3] M. Barnett, D. Payne, and R. van de Geijn, Optimal broadcasting in mesh-connecled
architectures, Tech. Rep. TR-91-38, Department of Computer Science, University of Texas
at Austin, 1991.

[4]
[5]
[6]

[7]

[12]

[13]

[14]

C. H. Bischof, Computing the singular value decomposition on a distributed system of vector
processors, Parallel Computing, 11 (1989), pp. 171-186.

—— A pipelined block QR decomposition algorithm., in Parallel Processing for Scientific
Computing, G. Rodrigue, ed., Philadelphia, 1989, SIAM Press, pp. 3-7.

C. H. Bischof and X. Sun, A divide-and-conquer method for computing complementary invariant
subspaces of symmetric matrices, Tech. Rep. MCS-P286-0192, Mathematics and Computer
Science Division, Argonne National Laboratory, 1992.

— A framework for band reduction and tridiagonalization of symmetric matrices, Tech. Rep.
MCS-P298-0392, Mathematics and Computer Science Division, Argonne National Laboratory,
1992.

C. H. Bischof and C. F. Van Loan, The WY representation for products of Householder
matrices, STAM Journal on Scientific and Statistical Computing, 8 (1987), pp. s2-s13.

J. Demmel, J. Dongarra, R. van de Geijn, and D. Walker, LAPACK for distributed-memory
machines: The next generation, in Proceedings of the Sixth STAM Conference on Parallel
Processing for Scientfic Computing, R. Sincovec, ed., Philadelphia, 1993, STAM.

J. Dongarra and R. van de Geijn, Reduction to condensed form for the eigenvalue problem on
distributed-memory architectures, Parallel Computer, 18 (1992), pp. 973-982.

J. Dongarra, R. van de Geijn, and D. Walker, A look at scalable dense linear algebra libraries,
Tech. Rep. TR CS-92-155, Computer Science Department, The University of Tennessee, May
1992.

J. J. Dongarra, S. J. Hammarling, and D. C. Sorensen, Block reduction of matrices to condensed
form for eigenvalue computations, Tech. Rep. MCS-TM-99, Mathematics and Computer
Science Division, Argonne National Laboratory, September 1987.

G. H. Golub and C. F. V. Loan, Matriz Computations, The Johns Hopkins University Press,
1983.

W. Gropp and B. Smith, Chamelon: Parallel programming tools user manual, tech. rep., Math-
ematics and Computer Science Division, Argonne National Laboratory, 1993. unpublished
draft.

B. Hendrikson and D. Womble, The torus-wrap mapping for dense matriz calculations on
massively parallel computers, Tech. Rep. SAND92-0792, Sandia National Laboratories, 1992.
S. Huss-Lederman, E. Jacobson, A. Tsao, and G. Zhang, Matriz multiplication on the intel
touchstone delta, in Proceedings of the Sixth STAM Conference on Parallel Processing for
Scientfic Computing, R. Sincovec, ed., Philadelphia, 1993, STAM.

S. Huss-Lederman, A. Tsao, and G. Zhang, A parallel implementation of the invariant subspace
decomposition algorithm for dense symmetric matrices, in Proceedings of the Sixth STAM
Conference on Parallel Processing for Scientfic Computing, R. Sincovec, ed., Philadelphia,
1993, STAM.

L. Kaufman, Banded eigenvalue solvers on vector machines, ACM Transactions on Mathemat-
ical Software, 10 (1984), pp. 73-86.

B. Lang, Parallele Reduktion symmetrischer Bandmatrizen auf Tridiagonalgestalt, PhD thesis,
Universitat Karlsruhe (TH), 1991.

H. Rutishauser, On Jacobi rotation patterns, in Proc. of Symposiain Applied Mathematics, Vol.
15, Experimental Arithmetic, High Speed Computing and Mathematics, 1963, pp. 219-239.
H. R. Schwarz, Tridiagonalization of a symmetric band matriz, Numerische Mathematik, 12
(1968), pp. 231-241.

R. van de Geijn, On global combine operations, Tech. Rep. CS-91-129, Computer Science
Department, The University of Tennessee, 1991. to appear in the Journal on Parallel and
Distributed Computing.

